作者: 来源: 阅读量: 发布时间:2020-05-22 15:16:28
姓名:王玲
职称:副教授
联系邮箱:wangling0607@smu.edu.cn
v 学习经历
2012.09-2017.09 西安交通大学, 生物医学工程, 博士, 导师: Peter X Ma教授(“-”教授)
2008.09-2012.07 西安交通大学, 生物工程, 学士
v 工作经历
2020.01-现在 南方医科大学, 生物医学工程学院, 副教授
2017.11-2018.02 香港科技大学, 博士后, 合作导师: 吴洪开教授
v 研究方向
一直从事于基于静电纺丝技术制备纳米纤维的再生医学应用研究,尤其是导电纳米纤维束和水凝胶用于仿生支架的设计、制备及其在骨骼肌组织工程、心肌组织工程和神经组织工程等方面的研究。研究成果发表在ACS Nano,Biomaterials等国际顶尖期刊上,论文迄今被引1000 余次。
v 主要学术任职
Tissue Engineering & Regenerative Medicine International Society,会员
v 主要获奖情况(科研获奖、人才类奖项)
无
v 主要科研课题
1. 南方医科大学高水平大学建设高层次人才引进-全职引进配套科研经费,导电纳米纤维仿生支架的设计、制备及其在骨骼肌、心肌、神经组织工程中的应用,主持,100万,2020-2025年。
2. 广州市科技局基础与应用基础研究项目,纳米纤维增强凝胶用于组织工程化骨骼肌-肌腱连接的一体化构建,主持,5万,2021年-2023年。
v 代表性论文
[1] L. Wang, Y. Wu, TL. Hu, B. Guo, P.X. Ma, Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomater. 96(2019): 175-187. (JCR一区,影响因子:7.242,被引35次)
[2] L. Wang, Y. Wu, TL. Hu, B. Guo, P.X. Ma, Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomater. 59(2017): 68-81. (JCR一区,影响因子:7.242,被引102次)
[3] L. Wang, Y. Wu, B. Guo, P.X. Ma, Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation, ACS Nano 9 (2015): 9167-9179. (JCR一区,影响因子:14.588,被引194次)
[4] Y. Wu#, L. Wang#, B. Guo, Y. Shao, P.X. Ma, Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3d cardiac anisotropy. ACS Nano 11(2017): 5646-5659. (JCR一区,影响因子:14.588,被引160次)
[5] Y. Wu#, L. Wang#, X. Zhao, S. Hou, B. Guo, P.X. Ma, Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly, Biomaterials 104 (2016): 18-31. (共同一作,JCR一区,影响因子:10.317,被引81次)
[6] Y. Wu#, L. Wang#, B. Guo, Y. Shao, P.X. Ma, Electroactive biodegradable polyurethane significantly enhanced schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering, Biomaterials 87 (2016): 18-31. (共同一作,JCR一区,影响因子:10. 317,被引163次)
[7] M. Xie#, L. Wang#, J. Ge, B. Guo, P. X Ma, Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering, ACS Appl. Mater. Interfaces 7 (2015): 6772−6781. (共同一作,JCR一区,影响因子:8.758,被引117次)
[8] Y. Wu, L. Wang, TL. Hu, B. Guo, P. X Ma, Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells. J. Colloid Interf. Sci., 518(2018): 252. (JCR二区,影响因子:6.361)
[9] M. Xie, L. Wang, B. Guo, P. X Ma, Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation, Biomaterials 71 (2015): 158-167. (JCR一区,影响因子:10. 317,被引59次)
[10] Y. Wu, L. Wang, B. Guo, P. X Ma, Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation, J. Mater. Chem. B 2 (2014): 3674. (JCR二区,影响因子:5.344)
[11] L. Zhang, L. Wang, B. Guo and P. X. Ma, Cytocomatible injectable carboxymethyl chitosan/ N-isopropylacrylamide hydrogels for localized drug delivery, Carbohydr. Polym. 103 (2014): 110-118. (JCR二区,影响因子:7.182)
[12] B. Lei, L. Wang, X. Chen and S.-K. Chae, Biomimetic and molecular level-based silicate bioactive glass–gelatin hybrid implants for loading-bearing bone fixation and repair, Journal of Materials Chemistry B 1 (2013): 5153-5162. (JCR二区,影响因子:5.344)
[13] T. Hu, Y. Wu, X. Zhao, L. Wang, L. Bi, P. X. Ma, B. Guo, Micropatterned, electroactive, and biodegradable poly (glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering. Chem. Eng. J. 366(2019): 208-222. (JCR一区,影响因子:10.652)
[14] L. Li, J. Ge, L. Wang, B. Guo, P. X. Ma, Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation. J. Mater. Chem. B 2(2014): 6119-6130. (JCR二区,影响因子:5.344)